Exam 2 - Information and Review Problems

1 Information

- When: Thursday 5 October, in class
- What: Lessons 11-20-ish (material covered on Monday 2 Oct)
- No outside materials (e.g. notes, homework, books) allowed
- No calculators allowed
- The exam will be designed so that only simple calculations are necessary
- Review in class on Wednesday 4 October
- We will discuss some of the problems below, as well as any questions that you might have
- EI on Wednesday 4 October, 19:00 - 20:00, CH348

2 Review Problems

Note: these problems together are not meant to represent the total length of the exam.
Problem 1. Let $\vec{r}(t)=(t) \vec{i}+(\cos \pi t) \vec{j}+(\sin \pi t) \vec{k}$.
a. Sketch the curve $\vec{r}(t), t \geq 0$.
b. Find $\vec{r}^{\prime}(t)$.
c. Find $\vec{r}^{\prime \prime}(t)$.
d. Find $\int_{0}^{1} \vec{r}(t) d t$.
e. Find the unit tangent vector at the point where $t=0$.

Problem 2. The positions of two airplanes at time t are given by the vector functions

$$
\vec{r}_{1}(t)=\left\langle-3+4 t, t^{2},-6+5 t\right\rangle \quad \vec{r}_{2}(t)=\left\langle t^{2},-12+7 t, t^{2}\right\rangle
$$

Do the airplanes collide? If not, do their paths intersect?
Problem 3. Find the length of the curve $\vec{r}(t)=\langle 2 t, \cos 2 t, \sin 2 t\rangle, 0 \leq t \leq 1$.
Problem 4. A ball is thrown from 2 m above the ground with an initial speed of $14 \mathrm{~m} / \mathrm{s}$ and angle of elevation 60°. Use $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$.
a. Set up an equation whose solution gives you the time t at which the ball lands. Do not solve the equation.
b. Suppose the solution to the equation you set up in part a is $t=-0.14,1.38$. Explain in words how you would use this to obtain the range of the ball. You do not have to give a numerical value for the projectile's range.

Problem 5. Make a rough sketch of a contour map for the function whose graph is shown below.

Problem 6. A contour map for a function f is shown below.

a. Estimate $f(3,2)$.
b. Is $f_{x}(1,1)$ positive or negative?
c. Is $f_{y}(4,0)$ positive or negative?

Problem 7. Find the first partial derivatives.
a. $f(x, y)=\sqrt{2 x+y^{2}}$
b. $f(x, y)=e^{-x} \sin 2 y$
c. $g(u, v)=u \arctan v$
d. $f(x, y, z)=\frac{x}{y-z}$

Problem 8. Let $f(x, y)=e^{x} \cos y$.
a. Find $f_{x}(x, y)$.
b. Find $f_{y}(x, y)$.
c. Find $f_{x y}(x, y)$.
d. Find $f_{y x}(x, y)$.

